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Abstract Bacteriophage (phage) therapy involves using
phages or their products as bioagents for the treatment or
prophylaxis of bacterial infectious diseases. Much evidence
in support of the effectiveness of phage therapy against
bacterial infectious diseases has accumulated since 1980
from animal model studies conducted in Western countries.
Reports indicate that appropriate administration of living
phages can be used to treat lethal infectious diseases caused
by gram-negative bacteria, such as Escherichia coli, Pseudo-
monas aeruginosa, Acinetobacter baumannii, Klebsiella
pneumoniae, Vibrio vulnificus, and Salmonella spp., and
gram-positive bacteria, such as Enterococcus faecium and
Staphylococcus aureus. The phage display system and ge-
netically modified nonreplicating phages are also effective
for treatment of Helicobacter pylori and P. aeruginosa, re-
spectively. In addition to phage particles per se, purified
phage-encoded peptidoglycan hydrolase (lysin) is also re-
ported to be effective for the treatment of bacterial infec-
tious diseases caused by gram-positive bacteria such as
Streptococcus pyogenes, S. pneumoniae, Bacillus anthracis,
and group B streptococci. All phage lysins that have been
studied to date exhibit immediate and strong bacteriolytic
activity when applied exogenously. Furthermore, phage-
coded inhibitors of peptidoglycan synthesis (protein anti-
biotics), search methods for novel antibacterial agents using
phage genome informatics, and vaccines utilizing phages
or their products are being developed. Phage therapy will
compensate for unavoidable complications of chemo-
therapy such as the appearance of multidrug resistance or
substituted microbism.
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Introduction

The worldwide spread of pathogenic bacteria that are resis-
tant to a variety of antibiotics threatens to reduce modern
medicine to a state reminiscent of the preantibiotic era.
Even though novel antibiotics directed against such drug-
resistant bacteria can be developed when extensive funds
are committed for research, the pathogens ultimately be-
come resistant to such drugs. To break this vicious cycle, it
will be necessary to adopt chemotherapy-independent re-
medial strategies to combat bacterial infections.

Bacteriophages (phages) are viruses that specifically in-
fect and lyse bacteria. Phage therapy, a method using ph-
ages for the treatment of bacterial infectious diseases, was
introduced by Félix d’Herelle, who codiscovered phages in
about 1920.1 This discovery occurred about 20 years before
practical application of penicillin, the first antibiotic. At the
time of its discovery, phage therapy was regarded as a
possible treatment method against bacterial infectious
diseases.2,3 Although phage therapy was used to treat and
prevent bacterial infectious diseases in the former Soviet
Union and Eastern Europe,4–7 it was abandoned by the
West in the 1940s with the arrival of the antibiotic era.
However, the ongoing evolution of bacterial multidrug-
resistance has recently motivated the Western scientific
community to reevaluate phage therapy for bacterial infec-
tions that are incurable by conventional chemotherapy.8–20

Phage therapy has many advantages over chemotherapy:
(1) it is effective against multidrug-resistant pathogenic
bacteria because the mechanisms by which it induces bac-
teriolysis differ completely from those of antibiotics; (2)
substituted microbism does not occur because it has high
specificity for target bacteria; (3) it can respond rapidly to
the appearance of phage-resistant mutants because the ph-
ages themselves are able to mutate; (4) the cost of develop-
ing a phage system is cheaper than that of developing a new
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antibiotic; and (5) because phages or their products (e.g.,
lysin, see below) do not affect eukaryotic cells, side effects
from phages per se are uncommon. This review summarizes
the current state of phage therapy.

Classification of phages

Phages were independently discovered by Twort (1915) and
d’Herelle (1917) as factors that could lyse Micrococcus
(now known as Staphylococcus) and dysentery bacillus,21

and about 5100 phages had been reported by the end of the
20th century.22 They are classified into 13 families according
to morphology, type of nucleic acid, and presence or ab-
sence of an envelope or lipid (Table 1). About 96% of
reported phages are “tailed phages” composed of an icosa-
hedral head and tail, and all of them have double-stranded
DNA as the genome. Tailed phages are classified into three
families according to the morphological features of the
tail: Myoviridae (contractile tail; e.g., KVP20,23 KVP40,24–31

KVP241,32 and T-even phages), Siphoviridae (long non-
contractile tail; e.g., fMR1133 and l), and Podoviridae (ex-
tremely short tail; e.g., T7) (Fig. 1). These three families
comprise the order Caudovirales.34 The other phages, which
are classified into ten families although they only constitute
4% of the total, are cubic, filamentous, or pleomorphic.
They contain double-stranded or single-stranded DNA or
RNA as the genome. Although most therapeutic phages
are tailed, some cubic phages (fX174 and Qb)35–37 or
filamentous phages (M13 and Pf3) 38,39 have also been used
(see later in this article).

Life cycle of phages

Aside from the morphological classification system, phages
can be divided into roughly two groups according to their
life cycle (Fig. 2): “the lytic phage,” which repeats a cycle in
which self-proliferation is synchronous with destruction of
bacteria (lytic cycle) (e.g., KVP20, KVP40, KVP241, and

T-even phages), and “the lysogenic phage,” which has a
lysogenic cycle in addition to a lytic cycle. In the lysogenic
cycle, the phage genome is integrated into the bacterial
genome, and the phage genome multiplies cooperatively
with the host bacteria without destroying it (e.g., fMR11
and l). Bacterial strains that integrate the phage genome
into their genome are known as lysogens, and they are
resistant to infection by phages that are genetically related
to previously lysogenized phages. Some lysogenic phages
have toxic genes in their genome.16,40–44 For these reasons,
the lytic phages are thought to be more suitable therapeutic
candidates than lysogenic phages. However, it may be pos-
sible to overcome the disadvantages of lysogenic phages by
genetic modifications that inactivate genes responsible for
lysogenicity and toxin production. In fact, a lysogenization-
deficient mutant that we constructed from a parent staphy-
lococcal phage showed higher therapeutic efficacy than the
parent (manuscript in preparation). Such a genetic alter-
ation is also presumed to avoid picking up bacterial toxic
genes, thereby considerably minimizing a possible disad-
vantage of lysogenic phages (also see “Problems to
overcome”).

Mechanism of bacteriolysis by phages

Figure 2 illustrates the general mechanism of bacteriolysis
by tailed phages.45,46 The first step of phage infection is
adsorption to the receptor, usually a protein or sugar on the
bacterial surface. Phages are able to adsorb to specific bac-
terial species or to specific strains; phages capable of infect-
ing across bacterial species or genera (so-called polyvalent
phages) are few in number. Phage therapy can therefore
eradicate target bacteria without disturbing the normal
flora. After adsorption, phage DNA is injected into the
bacterial cytoplasm, the DNA is replicated, and synthesized
multiple copies of DNAs are then taken into the capsid,
which is constructed de novo during the late stage of phage
infection. Descendant phage particles are completed by the
attachment of a tail to the DNA-filled head. Finally, the
progeny phages are liberated by the coordinated action of

Table 1. Classification of phages

Order Family Morphology Nucleic acid

Myoviridae
Caudovirales Siphoviridae

Podoviridae
Tectiviridaea Double-stranded DNA

Corticoviridaea

Lipothrixviridaeb

Plasmaviridaeb

Rudiviridae
Fuselloviridae
Inoviridae
Microviridae Single-stranded DNA
Leviviridae Single-stranded RNA

Cytoviridaeb Segmented, double-stranded
RNA

a Lipid containing
b Enveloped



213

Fig. 1. Electron micrographs of
tailed phages. KVP20, KVP40,
and KVP241 are Vibrio phages
belonging to family Myoviridae;
fMR11 is a Staphylococccus
phage belonging to family
Siphoviridae. Phages were
negatively stained with 1%
ammonium molybdate, pH 7.2
(KVP20, KVP40, and KVP241)
or 2% uranyl acetate, pH 4.0
(fMR11). Bars 100 nm

Fig. 2. Schematic illustration of
phage-induced bacteriolysis. (1)
Adsorption and DNA injection;
(2) DNA replication; (3)
production of head and tail; (4)
synthesis of holin and lysin; (5)
DNA packaging; (6) completion
of phage particle; (7) disruption
of the cell wall and release of
the progeny; (8) circularization
of phage DNA; (9) integration
of the phage DNA into the host
genome
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two proteins, holin and endolysin (lysin), coded by the ph-
age genome. Lysin is a peptidoglycan-degrading enzyme
(peptidoglycan hydrolase). Holin proteins form a “hole” in
the cell membrane, enabling lysin to reach the outer pepti-
doglycan layers.47 As described later, phage lysin is also
thought to be a candidate therapeutic agent against bacte-
rial infectious diseases. The released descendant phages in-
fect neighboring bacteria in quick succession. Even if the
initial number of phages is less than that of bacteria, the
number of phages will exceed that of bacteria after several
generations, and the entire bacterial population will eventu-
ally lyse (Fig. 3). The bacteriolytic activity of phages seems
to be stronger than that of bactericidal antibiotics such as
vancomycin, oxacillin, and rifampicin (Fig. 3).

Therapy using living phages

In the 1980s, Smith et al. undertook rigorous investigations
into phage therapy for pathogenic Escherichia coli infec-
tions in a veterinary context,48–51 thereby reopening this field

of research in Western countries. Smith et al. showed that a
single intramuscular dose of one anti-K1 phage is more
effective for treating mice challenged with E. coli intramus-
cularly or intracerebrally than multiple intramuscular doses
of tetracycline, ampicillin, chloramphenicol, or trime-
thoprim plus sulfafurazole. Since Smith’s reevaluation,
there have been many published reports examining phage
efficacy against experimental infections by E. coli,52–54

Pseudomonas aeruginosa,55–57 Acinetobacter baumanii,55

Klebsiella pneumoniae,58,59 Enterococcus faecium (vancomy-
cin-resistant strain, VRE),60 Vibrio vulnificus,61 and Salmo-
nella spp.62 in animal models.

Staphylococcus aureus is a pathogen of pyogenic inflam-
matory diseases, food poisoning, and toxic shock syndrome;
it is also a major causative agent for opportunistic and/or
nosocomial infections and often results in high mortality
rates.63 More than 50% of clinical S. aureus isolates in Japan
today carry multidrug resistance and are generally referred
to as methicillin-resistant S. aureus (MRSA).64,65 Moreover,
certain MRSA strains have already acquired low sensitivity
or resistance to vancomycin, a unique antibiotic previously
considered effective against MRSA, e.g., vancomycin-
intermediate S. aureus (VISA),66 or vancomycin-resistant S.
aureus (VRSA).67,68 Furthermore, S. aureus strains resistant
to linezolid, a recently developed novel synthetic antibiotic,
are already reported to be present in the United States and
Europe.69–71 We therefore examined the possibility of phage
therapy for S. aureus infectious disease.

In our previous study,33 some S. aureus phages with
theraputic potential were selected, and one of the phages,
designated fMR11, was representatively used for the
following examinations. Intraperitoneal injections (8 ¥ 108

cells) of S. aureus, including MRSA, caused bacteremia and
eventual death of mice. However, the subsequent intraperi-
toneal administration of purified phage fMR11 (multiplic-
ity of infection ≥0.1) suppressed S. aureus-induced lethality.
Moreover, inoculation with a high dose of fMR11 did not
have adverse effects on the host animals. The therapeutic
efficacy of fMR11 was discernible even when mice were
treated 60min after injection of the bacteria, at which time
they were already exhibiting signs of physical deterioration
such as reduced activity and ruffled fur. These results
suggest that phage therapy against S. aureus infection is
effective and safe.33

Recently, a staphylococcal phage (2 ¥ 109) was shown to
prevent abscess formation in a rabbit model of wound infec-
tion in which it was injected simultaneously with 8 ¥ 107 S.
aureus cells into a subcutaneous site. This result indicates
that phages might be a valuable prophylaxis against staphy-
lococcal infection.72 Furthermore, in hand-wash studies in
situ, a phage-enriched wash solution resulted in a 100-fold
reduction in staphylococcal numbers on human skin com-
pared with a phage-free wash solution.73 These results
provide strong evidence for the usefulness of living staphy-
lococcal phages as agents for therapy, prophylaxis, and dis-
infection of S. aureus infection.

For phage therapy, trapping of phages by the reticuloen-
dothelial system in the spleen was thought to be a major
problem,9,74 but Merril et al. developed an ingenious

Fig. 3. Effect of addition of phage fMR11 or antibiotics (vancomycin,
oxacillin, and rifampicin) on Staphylococcus aureus growth. S. aureus
SA37 was cultured in TSBM at 37°C. Bacterial growth was monitored
by measuring turbidity with a Klett–Summerson colorimeter (filter
#54). S. aureus SA37, phage fMR11, and TSBM medium were de-
scribed previously.61 At the time point indicated by the arrow, the
phage was added to the culture at multiplicity of infection (MOI) = 0.1
(closed circle), 1 (closed triangle), or 10 (closed square). Vancomycin
(open triangle), oxacillin (open square), or rifampicin (open rhomboid)
was added to the culture at concentrations of 10 mg/ml at the same time
point. An open circle indicates the growth of SA37 in the absence of
treatments
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method to solve the problem.52 They succeeded in isolating
the mutants, whose stability in the blood increased, by re-
peating the following procedure eight to ten times: (1)
administration of l (E. coli phage) or P22 (Salmonella
typhimurium phage) into the peritoneal cavity of the
mouse, (2) recovery of phages from the blood 7–18h after
the injection, (3) multiplication of the recovered phages in
vitro, and (4) readministration of the proliferated phages
to mice. Interestingly, the long-circulating mutants derived
from l phages had an altered capsid protein (gpE).

The effectiveness of phage administration for the control
of fish diseases and for food disinfection has also been
documented. Nakai et al. succeeded in saving the lives
of cultured fish challenged by Lactococcus garvieae and
Pseudomonas plecoglossicida, which are fish pathogens.75–78

Phages were also shown to be effective for the elimination
of food poisoning pathogens such as Listeria monocyto-
genes,79,80 Campylobacter jejuni,81–83 and Salmonella spp.83,84

from the surface of foods.
Research on theoretical aspects of phage therapy has

also advanced. Unlike antibiotics, the pharmacokinetics of
phages in vivo is complicated by their self-replicating na-
ture. It is thus difficult to construct a mathematical model to
explain phage–host interaction in vivo. Several theoretical
studies have been carried out to address this question.85–90

Whether a replication threshold density of the host cells in
phage therapy exists is a major point of controversy in this
field.

Phage therapy using nonreplicating genetically
modified phages

A method of eliminating Helicobacter pylori using a phage-
display technique has been described. A modified filamen-
tous phage, M13, which expressed a coat protein fused with
part of an antibody specific to an antigen on the cell surface,

was constructed. The modified M13 did not multiply on H.
pylori, but suppressed its growth in vitro. Furthermore,
oral administration of the phage decreased the number of
bacteria colonies in the stomachs of mice.38

The release of endotoxin (lipopolysaccharide), a compo-
nent of the outer membrane in gram-negative bacteria, by
phage infection is thought to be an important problem in
phage therapy. Recently, a unique method to minimize the
release of endotoxin in phage therapy against P. aeruginosa
disease was reported.39 Hagens et al. constructed a recombi-
nant phage derived from the P. aeruginosa filamentous
phage, Pf3.39 In this phage, the export protein gene of the
genome was replaced with a restriction endonuclease gene.
Although the mutant phage could not multiply in P.
aeruginosa cells, the restriction endonuclease expressed by
the injected phage DNA digested the host genomic DNA
and consequentially killed the bacteria with minimal release
of endotoxin in vitro. This modified phage reduced mort-
ality rate to a greater extent than the wild type in mice
challenged with P. aeruginosa.39

Utilization of phage lysin

As described earlier in this article, most tailed phages pro-
duce peptidoglycan hydrolase (endolysin or lysin) to release
their progeny at the final stage of multiplication. Amidase
(N-acetyl-muramyl-l-alanine bond), endopeptidase (cross-
linking peptide bond), or muramidase or glucosaminidase
(sugar chain) may be released, depending on the cutting site
(Fig. 4).45,91,92 Lysin is able to degrade peptidoglycan even if
it is made to react from outside the cell wall.92–99 Although
penicillin and cephalosporin antibiotics inhibit peptidogly-
can synthesis, lysing the bacterial cell upon cell division,
phage lysin destroys the peptidoglycan directly, exerting a
bacteriolytic effect within several seconds of administra-
tion. It can also destroy the cell walls of nongrowing bacte-

Fig. 4. Attack points of phage-
encoded lysins on the pepti-
doglycan of gram-positive
bacteria. GlcNac and MurNac
indicate N-acetylglucosamine
and N-acetylmuramic acid,
respectively. X shows the amino
acid composing the interpeptide
bridge of the peptidoglycan. The
number and type of amino acids
formed differ according to the
bacterial species
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ria, which are insensitive to many antibiotics. The simulta-
neous administration of two lysins that have different pep-
tidoglycan cutting sites has a synergistic effect.92,96

Interestingly, except for the lysin of an enterococcal ph-
age,99 lysin is fairly specific for bacterial species as well as
phages themselves, indicating that phage lysin can very
likely eliminate the targeted bacteria without disturbing the
normal flora.

In vivo efficacy of lysin treatment has been examined
using mice challenged by Streptococcus pyogenes,93 S.
pneumoniae,92,94–96 Bacillus anthracis,97 and group B strepto-
coccus.98 Lysin treatment was shown to be effective not only
against localized infections in the nasal cavity or vagina,
but also against systemic infections. We obtained similar
results using a staphylococcal phage lysin (manuscript in
preparation).

Utilization of phages to identify
an antibacterial substance

Liu et al. developed a procedure to search for antibacterial
agents using phage genomic informatics.100 They first
identified several phage genes coding small peptides that
inhibited the growth of Staphylococcus aureus and then
identified host factors (e.g., components of DNA poly-
merase or RNA polymerase) targeted by the peptides.
Finally, 125000 compounds were screened in vitro for
small molecules that interacted with the host factors in a
fluorescence polarization assay which used the Oregon
Green 488-labeled small peptide. Using this method,
they succeeded in discovering new potent antibacterial
substances that inhibit the growth of S. aureus. The com-
pounds were shown to inhibit DNA or RNA synthesis in
S. aureus.

Protein antibiotics

Some small phages such as fX174 or Qb, which have single-
stranded DNA or RNA, respectively, do not have the genes
for holin or lysin proteins, which are expressed by tailed
phages to degrade peptidoglycan as described earlier in this
article.35–37 Instead, they produce a protein that inhibits a
step in murein monomer synthesis. The fX174 gene prod-
uct, gpE, inhibits MraY, which catalyzes the formation of
the first lipid-linked murein precursor, and Qb gpA2 inhib-
its MurA, which catalyzes the first step in the murein bio-
synthesis pathway. Inhibition of synthesis of the cell wall is
thought to be a general strategy in small phages that do not
produce holin or lysin; their inhibitory gene products are
known as “protein antibiotics.”101 If a method can be devel-
oped to transport them efficiently into the host cytoplasm
through the cell membrane, they would be useful as anti-
bacterial agents.

Vaccine construction

When a plasmid carrying the fX174 gene E was introduced
into an H. pylori strain and the gene induced, the
Helicobacter pylori cells were destroyed, changing into so-
called ghosts without cytoplasm.102 Prophylactic oral vacci-
nation experiments using these H. pylori ghosts in the
mouse model resulted in a significant reduction in the num-
ber of colonized bacteria. This method of vaccine construc-
tion may be applicable to other gram-negative bacteria. On
the other hand, it was reported that E. coli phage l is a
suitable vector for DNA vaccine.103–105 Animals (mice and
rabbits) vaccinated with whole l particles containing a
DNA vaccine-expression cassette that expressed the hepati-
tis B virus surface antigen (HBs) gene under the control of
the cytomegalovirus (CMV) promoter produced antibodies
specific for HBs.

Problems to overcome

In phage therapy, the following problems remain to be
solved: (i) inactivation of administered phages or lysin by a
neutralizing antibody and allergic reactions to them, (ii)
appearance of mutants resistant to phages, and (iii) capture
and transfer of bacterial toxin genes by phages.

Regarding the first problem, decreases in the therapeutic
effect with multiple administrations have not been shown,
nor have side effects such as allergies been observed for
phages or lysin, although antibodies against them have been
detected in mouse blood98,99 (and our data, not shown). To
circumvent this problem, nevertheless, phages or lysins with
different antigenicities or with low immunogenicities could
be prepared.

Resistance of bacteria to phages is often caused by
changes in the phage-receptor molecules in gram-negative
bacteria. In phages of gram-negative bacteria, host-range
mutant phages, which restore the ability to adsorb to the
host, are easily isolated from the original phage popula-
tion.106–108 For example, a T-even type phage, Ox2, recog-
nizes OmpA (an outer membrane protein) of E. coli as
receptor. When OmpA was changed by a mutation, most
wild-type Ox2 phages could not adsorb to the mutant bacte-
ria, but some mutant phages that did adsorb were isolated.
The mutant phage may use OmpC, another outer mem-
brane protein, as an alternative receptor. When both
OmpA and OmpC were deficient, the phage changed to
recognize OmpX as receptor. Surprisingly, in the absence of
OmpA, OmpC, and OmpX, the phage changed further to
recognize lipopolysaccharide as receptor. The fact repre-
sents well the coevolution of phages with bacteria, which
heghtens the therapeutical value of live (self-multiplicative)
phages. On the other hand, there are very few studies on
interactions between gram-positive bacteria and their ph-
ages, and more research is required for further develop-
ment of phage therapy.

The problem of capture of bacterial toxin or antibiotic-
resistant genes by phages may be overcome by selection
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of suitable phages that do not have natural generalized or
specialized transduction abilities, or by construction of ge-
netically modified mutant phages against such phages.109

Conclusion

Much of the evidence presented in this review strongly
shows that appropriately administered phage therapy is
very effective for treatment and prevention of many kinds
of bacterial infectious diseases, especially those caused by
multidrug-resistant bacteria. Currently, many pathogenic
bacteria have acquired multiple drug resistance, which is a
serious clinical problem. Although some problems remain
to be solved, many experts are of the opinion that phage
therapy will find a niche in modern Western medicine in the
future.14
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