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Abstract

Breast-feeding is associated with several benefits. Among them, the balanced postnatal development of the immune

system is 1 of the key functions of breast-feeding. Although this effect is of multifactorial origin, it is widely accepted that

the entire intestinal microbiota of breast-fed infants represents an important stimulating factor of the postnatal

development of the immune system. The effect of breast-feeding on the intestinal microbiota can not be attributed to a

single compound, but there is accumulating evidence that human milk oligosaccharides play a crucial role. Because there

is a broad consensus that the intestinal microbiota plays an important physiological role for the host, many attempts have

been made to influence the intestinal flora by dietary interventions. This article summarizes results of intervention studies

in which nonmilk oligosaccharides have been used to mimic the prebiotic effect of breast-feeding. A second focus has

been related to the question of whether the prebiotic activity has beneficial effects on the postnatal development of the

immune system. The data clearly demonstrate that prebiotics of nonmilk origin can mimic the prebiotic effect of breast-

feeding, and this has positive consequences for the postnatal development of the immune system. J. Nutr. 138: 1818S–

1828S, 2008.

Introduction

Human milk is considered to be the ideal nutrition for term
infants because it provides all necessary nutrients for normal
growth and development. The quantity and quality of nutrients
are adapted to the functional maturation of the gastrointestinal
tract as well as the metabolic state of the infant, so that relatively
low concentrations of nutrients fulfill the requirements of the
infant. In addition, human milk contains components that
survive—partially or completely—intestinal digestion and pro-
vide functional capacity (1,2). There is a broad consensus that
breast-fed infants grow and develop differently than infants with
artificial feeding (3). Breast-fed infants have a reduced incidence
of allergic or atopic diseases (4–6) as well as of infections (7–9)
in comparison to bottle-fed infants, indicating a major impact of
breast-feeding on the development of the immune system.
Further potential benefits of breast-feeding, such as reduced
incidence of diabetes mellitus type I (10), better cognitive

functions (11), and lower blood pressure (12), have been
discussed.

The prevalence of atopic diseases has steadily increased
during recent decades in the developed countries. Thus, they
represent a major public health problem, particularly during
infancy and childhood in most areas (13). There is increasing
evidence that the composition of the intestinal microbiota plays
a key role in the postnatal development of the immune system
(14,15). Before birth, the infant’s gut is sterile. During vaginal
delivery, the natural colonization of the infant starts with
bacteria mainly from the vaginal and intestinal microbiota of the
mother. For the further development of the intestinal microbiota
of the infant, the diet plays an important role (16). During
breast-feeding, the composition of the gut microbiota develops
within a short period and becomes dominated by bifidobacteria,
whereas formula-fed infants without prebiotics develop a flora
of a more adult type (17).

Because of the importance of the intestinal microbiota for the
development of the gut physiology and the immune system,
many attempts have been made to mimic the intestinal micro-
biota of breast-fed infants in bottle-fed infants.

The composition of the intestinal microbiota can be influ-
enced either by administration of living health-promoting
bacteria that survive the gastrointestinal tract, exert their
biological activity by interaction with the surface of the small
intestine, and colonize the colon (18) or by application of dietary
ingredients that are nondigestible during the passage through the
small intestine, reach the colon, and stimulate selectively health-
promoting colonic bacteria (19,20) or by combining both
principles in a ‘‘synbiotic’’ approach (21).
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This article summarizes the current knowledge on the
influence of human milk oligosaccharides (HMOS)6 on the
development of intestinal microbiota, the possibilities of mim-
icking this function with oligosaccharides of nonmilk origin, and
the potential beneficial effects of prebiotic oligosaccharides on
the postnatal development of the immune system.

Structure of HMOS

The oligosaccharides in human milk are characterized by an
enormous structural diversity. There are great variations in
concentration and composition among individuals and during
the course of lactation (22). They appear as free structures or are
conjugated to macromolecules such as glycoproteins, glyco-
lipids, and others (23–25). This article focuses on the structure
and function of free oligosaccharides in human milk.

The monomers of HMOS are D-glucose, D-galactose (Gal),
N-acetyglucosamine, L-fucose (Fuc), and sialic acid (N-acetyl
neuraminic acid). There is evidence that .1000 distinct mole-
cules exist in the HMOS fraction (23,24).

Oligosaccharides appear in human milk at concentrations up
to 10 g/L. The molecules are synthesized in the breast starting
with lactose at the reducing terminus. The core molecule is
characterized by repetitive attachment of Gal and N-acetyglu-
cosamine, in b-glycosidic linkage to lactose. The a-glycosidic
linkages of Fuc to the core molecule characterize the neutral
fraction, and the additional linkage to sialic acid characterizes
the acidic fraction of HMOS (25). Specifically, the attachment of
Fuc is based on the secretor/Lewis blood group status of the
individual mother (26).

Physiological functions of HMOS

There are many different functions attributed to HMOS (23–
25,27), which may explain the great variety of their structures.
In this article, the prebiotic function (mainly related to the
neutral fraction of HMOS), the antiadhesive properties that
protect the epithelial surface from attachment of pathogens
(mainly related to the acidic fraction of HMOS), and possible
direct interactions of HMOS with the immune system are
discussed in the next sections.

Prebiotic effect of HMOS. The prebiotic effect of human milk
was intensively investigated over the last century. In particular,
several milk proteins, such as lactoferrin and lactalbumin, or
urea as part of the nonprotein nitrogen fraction have been
described as ‘‘bifidogenic factors’’ (28). Although the effect of
human milk on the postnatal development of the intestinal
microbiota cannot be attributed to a single ingredient, there is
evidence that HMOS play a key role (23,27–29).

Because the human intestine expresses no luminal enzymes to
cleave the a-glycosidic linkages of Fuc and sialic acid as well as
the b-glycosidic linkages in the core molecule, they are resistant
to enzymatic cleavage in the intestine (30–32). As a result of
their low digestibility, HMOS are still detectable in feces of
breast-fed infants (33). On the other hand, many intestinal
bacteria express glycosidases to metabolize HMOS (34).

Recent studies on the genome of bifidobacteria (35) and other
intestinal bacteria (Bacteroides, Actinobacteria, and others) (36)
have revealed the particular adaptation of the bacterial metab-
olism to the environment provided by the host. Bifidobacteria
are highly endowed with glycohydrolases able to metabolize

monosaccharides, which constitute molecules of HMOS (37).
Thus, the high portion of the genome dedicated to sugar
metabolism in bifidobacteria might explain their large presence
in the colon, reflecting a specific adaptation to this highly
competitive ecological niche, especially in breast-fed infants.

Data so far available on HMOS have focused mainly on their
role as growth and proliferation enhancement factors for
bifidobacteria. Ward et al. (38) demonstrated in in vitro studies
using HMOS as a sole carbon source that Bifidobacterium
longum and Bifidobacterium infantis showed significantly
higher fermentation of the tested HMOS compared with the
fermentation observed with Escherichia coli. These data clearly
confirm that bifidobacteria can indeed utilize complex carbohy-
drates such as HMOS, supporting the hypothesis that these
substances selectively amplify the bacterial population in the
infant’s intestine.

All these data provide strong evidence that many HMOS
are preferentially synthesized to be metabolized by intestinal
microbiota.

In summary, although it is not possible to calculate exactly
the quantities of oligosaccharides digested by the intestinal
microbiota, the available data indicate that the majority of
HMOS are used as prebiotic substrates rather than as nutritional
substrates.

Direct interactions of HMOS with immune cells and

bacteria. Apart from their prebiotic effect, there is also evidence
that HMOS act as receptor analogs to inhibit the adhesion of
pathogens on the epithelial surface (39). Specific binding of
HMOS to bacterial structures that mediate the adhesion on the
epithelial surface is seen as a passive defense of the host. There
are many different target structures (24), which might partially
explain the great variety of structures of HMOS.

There is also the possibility that HMOS interact directly with
immune cells (40–42). Direct effects can be the result of in-
teractions of the HMOS with selectins (43), dentritic cell specific
C-type lectin (44), integrins (45), and other target receptors such
as Toll-like receptors (46). In an in vitro study in which human
white blood cells separated from cord blood were incubated
with fractions of neutral and acidic HMOS [separated from
pooled human milk (47,48)], particularly acidic HMOS resulted
in a decrease of activated or regulatory T cells (40).

Because HMOS are resistant to digestion, they can pass the
intestinal wall in small amounts (;1% of intake) and can be
detected in the urine of breast-fed infants (33). The appearance
in the plasma and the distribution across the whole body might
be 1 factor for a systemic effect on the immune system of
HMOS. However, this hypothesis needs further investigation.

Clinical evidence of beneficial effects of HMOS. The infant
at birth is extremely vulnerable to infections and therefore needs
particular protection and support.

Howie et al. (7) investigated 618 pairs of mothers and their
infants to evaluate the influence of early diet on incidence of
infectious symptoms. They could demonstrate that infants who
were breast-fed for .13 wk had a lower incidence of gastroin-
testinal (2.9% vs. 15.7%) and of respiratory infections (25.6%
vs. 37.0%) compared with bottle-fed infants. The reduction of
infections was maintained even beyond the period of breast-
feeding, indicating an immune modulation effect of breast-
feeding. In summary, breast-feeding has been shown to enhance
the development of the immune system of the newborn, re-
sulting in protection against enteric and respiratory infections
(7,9,49,50).

6 Abbreviations used: DP, degree of polymerization; FOS, fructo-oligosaccharides;

Fuc, L-fucose; Gal, D-galactose; GOS, galacto-oligosaccharides; HMOS, human

milk oligosaccharides; lc, long chain; sc, short chain.
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Breast-feeding also appears to protect infants from the
development of atopic diseases (51,52) and is associated with
a reduced incidence of immune-mediated diseases demonstrat-
ing evidence that breast-feeding stimulates the postnatal devel-
opment of the immune system (53–55).

Although human milk protects the infant from infections in a
very complex way (54), there is evidence that HMOS is
1 important factor of breast milk to strengthen the infant’s
immune system.

Non-human-milk oligosaccharides

There is a wide range of molecule size distribution within the
HMOS fraction. Since 1980, oligosaccharides have been defined
as carbohydrates with a degree of polymerization (DP) up to 10.
However, oligosaccharides have recently been variously defined
as a DP ranging from 2 to 20 or more. Recently, the IUB-IUPAC
Joint Commission on Biochemical Nomenclature stated that the
borderline between oligo- and polysaccharides cannot be drawn
too strictly. However, the term oligosaccharide is commonly
used to refer to defined structures as opposed to a polymer of
unspecified length. The same approach is used for oligosaccha-
rides of non-human-milk origin as long as they have defined
structures (56,57).

There are still many open questions regarding the relation
between the structure of oligosaccharides and their biological
function (23). Because HMOS have been identified as functional
compounds in human milk, many efforts have been taken to
mimic these functions by alternative compounds. Oligosaccha-
rides from milk of domestic animals as well as several oligosac-
charides of nonmilk origin have been investigated.

Oligosaccharides from animal milks. Free oligosaccha-
rides are natural constituents of all mammal milks. In compar-
ison to human milk, the concentrations of oligosaccharides in
these milks are much lower, and their structure is less complex
(24,58).

In the neutral fraction of animal milk oligosaccharides, in
contrast to HMOS, linkages to Fuc are very rare with a few
exceptions, whereas linkages of Gal or GalNAc are dominant. In
addition, Gal and GalNAc can be detected in a-glycosidic
linkage at the nonreducing terminus. Sialic acid is the most
important structural element in the acidic fraction of the animal
milk oligosaccharides. The oligosaccharides from domestic ani-
mals have been extensively reviewed by Uraschima et al. (59).
Based on the structures of these oligosaccharides, it can be as-
sumed that they might also be effective as prebiotics in humans.
They might also provide antiadhesion properties to prevent
the adhesion of pathogens on the epithelial surface, and direct
interactions with immune cells can not be excluded. Despite all
these theoretical advantages, the preparation of these com-
pounds is difficult, and therefore, large-scale production is not
yet commercially available. Consequently, no clinical trial has
been published so far using fractions of animal milk oligosac-
charides as prebiotics.

Nonmilk oligosaccharides. Another alternative is the use of
nonmilk oligosaccharides. These can be found in bacteria, fungi,
and plants and derive from hydrolysis of dietary polymers
during digestion. Technologically, they can be extracted from
natural sources or be synthesized from monomers and/or small
oligosaccharides or derived from hydrolysis of natural polymers.

Prebiotic effects during infancy have been investigated for
galacto-oligosaccharides (GOS) (60,61), short-chain fructo-
oligosaccharides (scFOS) (62–71), inulin (72,73), lactulose

(74,75), and combinations such as a mixture of scGOS and
lactulose (76), a mixture of scFOS and long-chain (lc)FOS (77),
galacturonic acid oligosaccharides in combination with scGOS
and lcFOS (78), and a mixture of scGOS and lcFOS (79–104)
(see also Tables 1 and 2).

There are several other carbohydrates under investigation in
regard to their possible prebiotic function, such as pectins,
resistant starch, xylo-oligosaccharides, soybean oligosaccha-
rides, or isomaltulose (24,105–107). However, there are no data
available with respect to their prebiotic properties in infancy.

The counts of fecal bifidobacteria, their percentage among
the total bacteria, and the production of SCFA are generally
accepted measurements to detect a prebiotic effect. On the basis
of these markers, sufficient data are available only for GOS and
FOS to classify them as prebiotics (20,108). Therefore, the next
section focuses on these 2 prebiotics.

Structure of GOS and FOS. The GOS are synthesized from lac-
tose via an enzymatic transgalactosylation using a b-galactosidase
mainly of bacterial origin (109). These GOS consist of a chain of
galactose monomers, usually with a glucose monomer on the
reducing terminus, with a DP much less than 10 monomers.

Fructans are linear or branched fructose polymers that are
either b2–1-linked inulins or b2–6-linked levans. The inulin-
type fructans can easily be extracted from plant sources and have
widely been used as ingredients for dietary products. In the
current literature, the term FOS refers to the inulin-type
fructans. In the natural sources of FOS, the molecule size is
widespread [DP ranging from 2 to .60 (110)]. Because the
biological activity of prebiotics depends on the molecular size
(111), it is particularly important to consider the molecular size
distribution for reviewing clinical data on fructans. lcFOS are
prepared from inulin from which the scFOS (DP 2–6) have been
largely removed and consequently contain predominantly large
molecules with a DP between 7 and 60.

Digestibility of GOS and FOS. Because nondigestibility in the
small intestine and selective fermentation by the intestinal
microbiota are prerequisites of any prebiotic effect of dietary
ingredients (20), human studies have been performed to address
this issue.

In fructose-sensitive patients fed lcFOS, no side effect could
be detected demonstrating the low or absent digestibility of
lcFOS (112). In adult patients with ileostomata, scGOS are still
detectable after passage of the small intestine (113). In term
infants fed a formula supplemented with scGOS/lsFOS, both
prebiotics could be detected in the feces (81). Although it is
difficult to quantify the percentage of substrate that reaches the
colon, it can be speculated that the majority reaches the colon.
This assumption is supported by analyses of the bacterial
fermentation products of intestinal microbiota. The mixture of
scGOS/lcFOS results in similar SCFA profiles than HMOS in
vitro (114) as well as in term infants (83).

This is in line with in vitro experiments in which the
fermentation of GOS and FOS by bifidobacteria and lactobacilli
has been studied (114–117).

Prebiotic function of GOS and FOS. GOS as supplement to
a formula stimulated the counts of bifidobacteria and lactoba-
cilli in 2 studies (60,61). In contrast, the data from studies in
which scFOS were investigated are inconsistent (62–70). Only
2 small studies have been published using inulin as supple-
ment (72,73). Both studies demonstrate a bifidogenic effect of
inulin.
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TABLE 1 Clinical trials with prebiotic oligosaccharides in term infants (nutritional intervention during the first year of life)

Prebiotic compound1 Basic nutrition1 Target group and age Study groups (n) Main outcome Reference

scGOS, 20 g/L IMF Healthy term infants Prebiotics (43) Increased counts of

bifidobacteria and

lactobacilli

Yahiro et al. (60)

Intact CMP Control (17)

BM reference (20)

scGOS, 24 g/L IMF Healthy term infants 0–6 mo Prebiotics (69) Increased counts of

bifidobacteria and lactobacilli,

decreased fecal pH

Ben et al. (61)

Intact CMP Control (52)

BM reference (26)

scFOS, 45 g/L FOF Infants with antibiotic

treatment 6–24 mo

Prebiotics (57) Increased counts of

bifidobacteria after

antibiotic treatment

Brunser et al. (62)

Intact CMP Control (56)

scFOS, 0.55 g/15 g Cereals Healthy infants 4–24 mo Prebiotics (63) Decreased severity of

diarrhea diseases

(no microbiology)

Sarveeda et al. (63)

Tschernia et al. (64)Control (60)

scFOS, 15 and 30 g/L IMF Healthy term infants 2–12 wk Prebiotics, 1.5 g (28) No clear effect on counts of

bifidobacteria, softer stools

(dose dependent)

Euler et al. (65)

Intact CMP Prebiotics, 3.0 g (30)

BM reference (14)

scFOS, 0.75 g/25 g Cereals Healthy infants 4–12 mo Cereals 1 FOS (27) Softer stools, no effect

on fecal pH (no microbiology)

Moore et al. (66)

Placebo (29)

scFOS, 0.55 g/15 g Cereals Healthy infants 6–12 mo Prebiotics (239) No influence on clinical course

and incidence of diarrhea,

no effect on vaccination response

(no microbiology)

Duggan et al. (67)

Control (276)

scFOS IMF Healthy term infants 6–24 mo Prebiotics (10) Trend for higher counts of

bifidobacteria and decrease in

potential pathogens, no persistens

after intervention

Waligora-Dupiet

et al. (68)Intact CMP Control (12)

scFOS, 1.0, 2.0,

3.0 g/day

IMF Healthy term infants 0–6 wk Prebiotics, 1.0 g (13) Increased number of stools,

no bifidogenic effect,

no influence on faecal pH

Guesry et al. (69)

Intact CMP Prebiotics, 2.0 g (11)

Prebiotics, 3.0 g (12)

Controls (17)

scFOS, 15 and 30 g/L IMF Healthy term infants 0–14 wk Prebiotics, 1.5 g (72) Safe and less complication

(no microbiology)

Bettler et al. (70)

Intact CMP Prebiotics, 3.0 g (74)

Control (66)

Inulin, 1.0 g/d IMF Healthy term infants 5–24 wk Inulin and placebo

as crossover (14)

Increased counts of bifidobacteria

and lactobacilli, softer stools

Kim et al. (72)

Intact CMP

Inulin, 0.75, 1.0,

and 1.25 g/d

IMF Healthy term infants 5–12 mo Prebiotics, 0.75 g/d (10) Tendency of increased short chain

fatty acid production, significant

influence on mineral absorption

(no microbiology)

Yap et al. (73)

Intact CMP Prebiotics, 1.0 g/d (9)

Prebiotics, 1.25 g/d (9)

Controls (8)

Lactulose, 5 and 10 g/L IMF Healthy term infants 0–6 mo Lactulose and control

as crossover (6)

Increased counts of bifidobacteria,

reduced fecal pH

Nagendra et al. (74)

Intact CMP

Lactulose, 6 g/d IMF Infants with allergic

symptoms 1–36 mo

Prebiotics (12) Increased counts of bifidobacteria,

improvement of symptoms

Rinne et al. (75)

Hydrolyzed CMP

scGOS/lactulose,

4 and 8 g/L

IMF Healthy term infants 0–6 mo Prebiotics, 4 g/L (74) Softer stools and increased stool

frequency (no microbiology)

Ziegler et al. (76)

Intact CMP Prebiotics, 8 g/L (76)

Controls (76)

scFOS/inulin, 1.0 g/25 g Cereals Healthy term infants 0–12 mo Prebiotics (24) Increased postvaccination IgG

measles antibody plasma levels

Firmansyah et al. (77)

Control (25)

AOS, 2 g/L and 2 g/L

1 6 g/L scGOS/lcFOS

IMF Healthy term infants 0–6 mo Prebiotic AOS (16) Increased counts of bifidobacteria with

GOS/FOS/AOS, decreased fecal pH

Fanaro et al. (78)

Intact CMP PrebioticAOS

1 scGOS/lcFOS (15)

Control (15)

scGOS/lcFOS, 8 g/L IMF, partially

hydrolyzed protein

Infants with constipation

3–20 wk

Prebiotic (20) Reduced hardness of stool

(no microbiology)

Bongers et al. (79)

Control (18)

scGOS/lcFOS,

4 and 8 g/L

IMF Healthy term infants 0–4 mo Prebiotics, 4 g (28) Increased counts of bifidobacteria

and lactobacilli, decreased

fecal pH, effect dose dependent

Moro et al. (80)

Moro et al. (81)Intact CMP Prebiotics, 8 g (28)

Control (29)
(Continued)
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In recent years different mixtures have been studied. In
particular, a combination of scGOS/lcFOS (ratio 9:1) (Immu-
nofortis, Numico, Wageningen, The Netherlands) has been
extensively studied, as has a mixture of scFOS with lcFOS (see
Tables 1 and 2).

There are several reasons to investigate a mixture of
oligosaccharides instead of individual components (118). One
is the fact that the composition of the entire intestinal microbiota
is very complex (17), which might require different substrates
for the development of the entire microbiota. A second reason is
the great variability of oligosaccharide structures in human milk
(24), which also indicates that several structures are necessary to
stimulate microbiota typical for breast-fed infants.

Because the interaction among dietary components and the
intestinal ecosystem is very complex, the matrix of the food
might influence the effectiveness of oligosaccharides. The type
and concentration of proteins have been discussed as factors
modulating the intestinal microbiota [intensively reviewed by

Coppa et al. (28)]. Most studies in infants have been performed
with cow-milk-based formulas with different qualities and
quantities of protein. Prebiotics have also been successfully
added to solid weaning food or cereals (Tables 1 and 2). Pre-
biotic effects have also been seen in adults consuming a typical
Western diet (119). Thus, there is evidence that the prebiotic
effect is independent of the type of food used as basis for the
nutrition.

Effect of colonic fermentation of GOS and FOS. The
bifidogenic effect is often associated with a reduction of the stool
pH and changes in the SCFA pattern. Lower fecal pH has been
described in a study using GOS (61) and in studies using a
mixture of scGOS/lcFOS (78,80,83,90), but scFOS were not
able to influence fecal pH (66,69).

As mentioned above, supplementing an infant formula with
the mixture of scGOS/lcFOS resulted in a pattern of SCFA in
feces corresponding to that found in the feces of breast-fed

TABLE 1 Continued

Prebiotic compound1 Basic nutrition1 Target group and age Study groups (n) Main outcome Reference

BM reference (15)

scGOS/lcFOS, 8 g/L IMF, partially

hydrolyzed protein

Healthy term infants 0–6 mo prebiotic (28) Increased counts of

bifidobacteria, softer stools

Schmelze et al. (82)

placebo (29)

BM reference (15)

scGOS/lcFOS, 8 g/L IMF Healthy term infants 0–6 mo Prebiotic (21) Increased counts of bifidobacteria

and lactobacilli, dominance of

B. infantis, short chain fatty acid

pattern as in breast-fed infants

Knol et al. (83)

Haarman and Knol (84)

Haarman and Knol (85)

Intact CMP Placebo (20)

scGOS/lcFOS, 4 g/L IMF Healthy term

infants 1–12 wk

Prebiotics (34) Trend for higher counts of

bifidobacteria, reduced counts

of clostridia

Costalos et al. (86)

Intact CMP Control (32)

scGOS/lcFOS, 8 g/L IMF, partially

hydrolyzed protein

Infants with minor

gastrointestinal

problems 9–12 mo

Prebiotics (604) Reduction of gastrointestinal

problems (no microbiology)

Salvino et al. (87)

scGOS/lcFOS, 8 g/L IMF, partially

hydrolyzed protein

Infants with minor

gastrointestinal

problems 9–12 mo

Prebiotics (55) Reduction of gastrointestinal

problems (no microbiology)

Salvino et al. (88)

Control (40)

scGOS/lcFOS, 8 g/L IMF Term infants at

weaning 4–12 mo

Prebiotic (10) Increased counts of

bifidobacteria

Scholtens et al. (89)

Intact CMP Control (10)

scGOS/lcFOS, 6 g/L IMF

Intact CMP

Healthy term

infants 0–4 mo

Prebiotic (19)

Control (19)

Reduced fecal pH, increased

fecal short chain fatty acids,

increased fecal sIgA; no significant

higher countsd of bifidobacteria

compared with controls

Bakker-Zierikzee et al. (90)

Bakker-Zierikzee et al. (91)

scGOS/lcFOS,8 g/L IMF, extensively

hydrolyzed protein

Healthy term infants at

risk for allergy 0–6 mo

Prebiotic (102) Increased counts of bifidobacteria,

reduced incidence of atopic dermatitis,

reduced incidence of infections,

anti allergic serum antibodies

Moro et al. (92)

Arslanoglu et al. (93)

Garrssen et al. (94)

Arslanoglu et al. (95)

Control (104)

scGOS/lcFOS, 6 g/L IMF Healthy term

infants 0–26 wk

Prebiotic (86) Increased counts of bifidobacteria,

increased fecal sIgA

Alliet et al. (96)

Intact CMP Control (90)

scGOS/lcFOS, 4 g/L IMF Healthy term

infants 0–12 wk

Prebiotic (14) Increased counts

of bifidobacteria

Decsi et al. (97)

Intact CMP Control (19)

scGOS/lcFOS, 8 g/L IMF Healthy term

infants 0–6 mo

Prebiotic (8) Increased counts of bifidobacteria

Bifidobacterium microbiota close

to breast-fed infants

Rinne et al. (98)

Intact CMP Control (8)

BM reference (8)

scGOS/lcFOS, 8 g/L IMF Healthy term

infants 0–4 wk

Prebiotic (20) Increased counts of bifidobacteria

and lactobacilli

Penders et al. (99)

Intact CMP Observation study

scGOS/lcFOS, 4 g/L IMF Healthy term infants,

0–12 mo

Prebiotic (162) Decreased rate of infection

(recurrent upper respiratory

tract infection, diarrhea)

Bruzzese et al. (100)

Intact CMP Control (164)

1 IMF, infant milk formula; FOF, follow-on formula; AOS, acidic oligosaccharides deriving from pectin; CMP, cow milk protein.
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infants (83). Yap et al. (73) found a tendency to increased SCFA
production in infants fed a formula supplemented with inulin
alone. SCFA represent fermentation products of bacteria in the
colon, and they are therefore an important characteristic feature
of the entire intestinal microbiota (120). Thus, it can be assumed
that SCFA profiles similar to the profiles found in breast-fed
infants reflect similarities of the entire microbiota between
breast-fed infants and infants fed a prebiotic formula

There are several results available indicating that SCFA and
pH influence the physiological role of intestinal cells.

In an in vitro model in which epithelial cells (T 84 cell line)
were combined with myofibroblast cells (CDD-18 Co cell line)
in a coculture, SCFA as they appear in the feces of breast-fed
infants were able to stimulate mucin-2 production and improve
the gut barrier integrity (121). The effect of SCFA on growth of
pathogens as well as of commensals has been studied in vitro at
pH 7.5 (typical fecal pH in formula-fed infants) and at pH 5.5
(typical fecal pH in breast-fed infants). SCFA inhibit the growth
of pathogens in a dose-dependent manner but did not affect the
growth of commensals. This effect was seen only at pH 5.5 but
not at pH 7.5, indicating that achieving the same pH and SCFA
pattern found in stools from breast-fed infants by prebiotics
results in reduced growth of pathogens (68,80,99,122).

Additionally, SCFA might play a role in the regulation of
intestinal motility (123,124).

Selectivity of the prebiotic effect of GOS and FOS. There is
evidence that early colonization with specific microbiota might
be associated with the development of allergic symptoms later in
life. Bjorksten et al. (125) found that allergic infants were less
often colonized by lactobacilli and bifidobacteria than nonaller-
gic infants. Additionally, it was found that allergic infants had
more adult-like species in their fecal flora, including Bifidobac-
teria adolescentis, compared with healthy infants in whom B.
bifidum, B. infantis, and B. breve predominated (126). Also, in
Japanese infants suffering from atopic dermatitis, similar find-
ings have been reported (127). This suggests that different bacterial
species may have different functional effects on the immunological
reaction of the host. Specific modulation of the composition of the
intestinal microbiota by the use of prebiotics is therefore expected
to have a functional impact on the immune system.

Consequently, studies focusing on the effect of prebiotics on
the development of the different species of bifidobacteria (80,95)
have been performed. In these studies, it could be demonstrated
that the prebiotic mixture of scGOS/lcFOS promoted B. infantis
and depressed B. adolescentis. In a study in term infants (80),
B. adolescentis dominated on d 5 of life (70%), but the per-
centage was reduced to ;20% during a 6-wk breast-feeding
period. During this period, B. infantis increased. The same
changes occurred in the group fed the prebiotic mixture but not
in the group fed formula without prebiotics.

In summary, the experimental data as well as the results of
clinical trials prove that prebiotic substances with a structure
different from the structure of HMOS are able to influence the
intestinal microbiota toward a composition as found in breast-
fed infants.

Effect of GOS and FOS on immune system: results of

animal studies. There is accumulating evidence that the
interaction between the intestinal microbiota and the gut plays
an important role for the postnatal development of the immune
system. However, the interactions among intestinal epithelial,
immune cells, and the different species of the intestinal micro-
biota are very complex and not fully understood (128,129).

Following the Process for the Assessment of Scientific
Support for Claims on Foods recommendation (130,131),
studies in mice are recommended to substantiate conclusions
related to immunological effects of dietary compounds. The
experimental data concerning the immune modulatory effect of
prebiotics have been intensively reviewed by Vos et al. (46).

In mice, it could be shown that scGOS/lcFOS were bifidogenic
in a dose-dependent manner, result in a reduction of the fecal pH
and in a fecal SCFA pattern as found in human infants, and
support the relevance of the animal data for the human situation
(132).

In the mouse vaccination model, the prebiotic mixture of
scGOS/lcFOS significantly stimulated the vaccination response
in a dose-dependent manner and modulated the immune system
toward a Th1-dominated immune response. This effect occurred
only if the nutritional intervention with prebiotic started before
the first vaccination. This was not seen when the prebiotics
were fed after the first vaccination, indicating that the use of

TABLE 2 Review of clinical trials with prebiotics in preterm infants (nutritional intervention during the first year of life)

Prebiotic compound Basic nutrition Target group and age Study groups (n) Main outcome Reference

scFOS, 4 g/L Preterm formula,

Intact CMP1

Healthy preterm

infants 0–21 d

Prebiotics (36)

Controls (20)

Increased counts of

bifidobacteria within 1 wk

of intervention

Kapiki et al. (71)

GOS/lcFOS, 10 g/L Preterm formula,

Intact CMP

Healthy preterm

infants 0–21 d

Prebiotics (15)

Controls (15)

Reference (13)

Increasing counts of

bifidobacteria, reduction

of hardness of stools,

reduction of counts of

fecal pathogens

Boehm et al. (101)

Knol et al. (102)

GOS/lcFOS, 8 g/L Preterm formula,

Intact CMP

Healthy preterm

infants 0–21 d

Prebiotic (10)

Controls (10)

Reduction of gastrointestinal

transit time; reduction of

stool viscosity (no microbiology)

Mihatsch et al. (103)

GOS/lcFOS, 8 g/L Preterm formula,

Intact CMP

Healthy preterm

infants 0–21 d

Prebiotic (10)

Controls (10)

Statistically significant but

small effect on reduction of

gastric emptying time

(no microbiology)

Indrio et al. (104)

1 CMP, cow milk protein.
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prebiotics for prevention is more relevant than for a treatment
approach.

In the same experiments, different classical fiber mixtures in a
dose similar to the scGOS/lcFOS mixture have been tested.
There was no effect of these fibers on the measured biomarkers
of the immune system, indicating that different nondigestible
carbohydrates react differently with respect to intestinal flora
and immune function (132).

There are also data available concerning the effect of this
specific prebiotic mixture on the allergic reaction in a mouse
model using ovalbumin as antigen. Feeding the prebiotic
mixture of scGOS/lcFOS significantly reduced the allergic
reaction against ovalbumin (133).

Based on the link between immune status and cancer
development, Pierre et al. (134) observed in Min mice depleted
in CD41 and CD81 lymphocytes that dietary scFOS provided a
mechanism of tumor surveillance effective against the develop-
ment of colon tumors.

In summary, the animal data allow the conclusion that
certain prebiotics are able to modulate the immune system of the
mice and provide preventive effects with regard to the develop-
ment of infectious as well as allergic diseases. This effect seems
mainly mediated by modulation of the intestinal microbiota.

Effect of GOS and FOS on the immune system: results of

human studies. There is increasing evidence that the interac-
tion between the intestinal microbiota and the intestinal
epithelial and immune cells plays a key role in the postnatal
development of the immune system (135–137). The results of
the animal experiments support the hypothesis that the estab-
lishment of intestinal microbiota in formula-fed infants similar
to that found in breast-fed infants will result in a development of
the immune system comparable to the development in breast-fed
infants.

Saavedra et al. (63) reported that the supplementation of
weaning food with scFOS (0.55 g/15 g cereals; intake 1.2 g/d)
was associated with a reduced rate of infectious episodes. No
effects of scFOS on clinical course and incidence of diarrhea
have been found by Duggan et al. (67).

Firmansyah et al. (77) reported increased (P , 0.05)
postvaccination IgG antibodies in plasma in infants fed with
cereals supplemented with a mixture of scFOS and lcFOS.

Moro et al. (80) reported a reduced cumulative incidence of
atopic dermatitis according to the international recommended
diagnostic criteria (131) in a group of high-risk infants fed a
formula supplemented with scGOS/lcFOS compared with a non-
supplemented formula (9.8% vs. 23.1%; P ¼ 0.014) and a
reduced rate of episodes of infections (47 vs. 21; P ¼ 0.01). The
prebiotic supplementation resulted in a significant reduction of
plasma levels of total IgE, IgG1, IgG2, and IgG3, but no effect
on IgG4 was observed, indicating that the prebiotic mixture
induced an antiallergic immune globulin profile in this cohort of
infants at risk (91). More recently, the 2-y follow-up data have
been reported that further support the hypothesis that the
prebiotic formula resulted in a reduced incidence of allergic
symptoms (90).

In a study performed in a healthy population of 326 term
infants (97), the supplementation of a formula with prebiotic
mixture scGOS/lcFOS results in a reduced incidence of infec-
tious symptoms during the first years of life (acute diarrhea,
0.13 6 0.39 vs. 0.26 6 0.53 episodes/child annually, P ¼ 0.02;
.3 episodes of upper respiratory tract infections, 22/169 vs.
36/173, P ¼ 0.06; number of children who received more than
2 antibiotics courses/y, 32/84 vs. 59/87, P , 0.01).

In summary, the available data from human trials are com-
pletely in accord with the data derived from animal experiments
demonstrating the immune modulatory effect of prebiotics.
There are indications that the effects are specific for each prebi-
otic ingredient. Consequently, the European Food Safety Agency
requested for approval of a new prebiotic ingredient (or com-
bination of ingredients) specific studies to demonstrate its safety
and efficiency (138).

There is evidence that prebiotics have a significant and
biologically relevant effect on the postnatal development of the
immune system. The most conclusive data exist for a mixture of
scGOS/lcFOS. The mechanism behind the immune modulatory
effects of the studied prebiotic oligosaccharides is not yet fully
understood. However, findings in the human trials confirm the
results obtained from animal models. The data indicate that
prebiotics can serve as an effective and safe tool to strengthen
the immune system during infancy, which might offer a new
method to prevent infections and allergy. However, long term
studies are needed to test the hypothesis that the influence of
dietary factors on the immune system early in life might have
beneficial consequences later in life.

Other articles in this supplement include references (139–148).
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